SUNDIALS is a SUite of Nonlinear and DIfferential/ALgebraic equation Solvers. It consists of the following six solvers: CVODE, solves initial value problems for ordinary differential equation (ODE) systems; CVODES, solves ODE systems and includes sensitivity analysis capabilities (forward and adjoint); ARKODE, solves initial value ODE problems with additive Runge-Kutta methods, include support for IMEX methods; IDA, solves initial value problems for differential-algebraic equation (DAE) systems; IDAS, solves DAE systems and includes sensitivity analysis capabilities (forward and adjoint); KINSOL, solves nonlinear algebraic systems.
Publications
Preprints
Maliyov, I., Yin, J., Yao, J., Yang, C., Bernardi, M. (2023). Dynamic mode decomposition of nonequilibrium electron-phonon dynamics: accelerating the first-principles real-time Boltzmann equation. arXiv preprint arXiv:2311.07520.
Atanasova, H., Erpenbeck, A., Gull, E., Bar Lev, Y., & Cohen, G. (2023). Stark-Many body localization in interacting infinite dimensional systems. arXiv preprint arXiv:2311.08893.
Kemper, A. F., Yang, C., & Gull, E. (2023). On the Positive Definiteness of Response Functions in the Time Domain. arXiv preprint arXiv:2309.02566.
Erpenbeck, A., Gull, E., & Cohen, G. (2023). Shaping electronic flows with strongly correlated physics. arXiv preprint arXiv:2308.07753.
Begušić, T., Gray, J., & Chan, G. K. (2023). Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance. arXiv preprint arXiv:2308.05077.
Begušić, T., Hejazi, K., & Chan, G. K. (2023). Simulating quantum circuit expectation values by Clifford perturbation theory. arXiv preprint arXiv:2306.04797.
Verma, A., Golež, D., Gorobtsov, O. Y., Kaj, K., Russell, R., Kaaret, J. Z., Lamb, E., Khalsa, G., Nair, H. P., Sun, Y., Bouck, R., Schreiber, N., Ruf, J. P., Ramaprasad, V., Kubota, Y., Togashi, T., Stoica, V. A., Padmanabhan, H., Freeland, J. W., Benedek, N. A., Shpyrko, O., Harter, J. W., Averitt, R. D., Schlom, D. G., Shen, K. M., Millis, A. J., & Singer, A. (2023). Picosecond volume expansion drives a later-time insulator-metal transition in a nano-textured Mott Insulator. arXiv preprint arXiv:2304.02149.
2023
Bernardi, M. (2023). Efficient Mean-Field Simulation of Quantum Circuits Inspired by the Many-Electron Problem. J. Chem. Theory Comput. 19, 22, 8066.
Mejía, L., Yin, J., Reichman, D. R., Baer, R., Yang, C., & Rabani, E. (2023). Stochastic Real-Time Second-Order Green’s Function Theory for Neutral Excitations in Molecules and Nanostructures.
J. Chem. Theory Comput. 19, 5563.
Erpenbeck, A., Lin, W.-T., Blommel, T., Zhang, L., Iskakov, S., Bernheimer, L., Núñez-Fernández, Y., Cohen, G. , Parcollet, O., Waintal, X., & Gull, E. (2023). Tensor Train Continuous Time Solver for Quantum Impurity Models. Phys. Rev. B 107, 245135.
Erpenbeck, A., Gull, E., & Cohen, G. (2023). Quantum Monte Carlo in the steady-state. Phys. Rev. Lett. 130, 186301.
Ng, N., Park, G., Millis, A. J., Chan, G. K.-L., & Reichman, D. R. (2023). Real-time evolution of Anderson impurity models via tensor network influence functionals. Phys. Rev. B 107, 125103.
Huang, Z., Gull, E., & Lin, L. (2023). Robust analytic continuation of Green's functions via projection, pole estimation, and semidefinite relaxation. Phys. Rev. B 107, 075151.
2022
Chen, H.-Y., Sangalli, D., & Bernardi, M. (2022). First-principles ultrafast exciton dynamics and time-domain spectroscopies: Dark-exciton mediated valley depolarization in monolayer WSe2. Phys. Rev. Research 4, 043203.
Dong, X., Gull, E., & Strand, H. U. R. (2022). Excitations and spectra from equilibrium real-time Green's functions. Phys. Rev. B 106, 125153.
Dou, W., Lee, J., Reichman, D. R., Baer, R., & Rabani, E. (2022). Time dependent second order Green's function theory for neutral excitations. J. Chem. Theory Comput. 18, 5221.
Pollock, F. A., Gull, E., Modi, K., & Cohen, G. (2022). Reduced Dynamics of Full Counting Statistics. SciPost Phys. 13, 027.
Luo, Y., Chang, B. K., & Bernardi, M. (2022). Comparison of the canonical transformation and energy functional formalisms for ab initio calculations of self-localized polarons. Phys. Rev. B 105, 155132.
Li, J., Yu, Y., Gull, E., & Cohen, G. (2022). Interaction expansion inchworm Monte Carlo solver for lattice and impurity models. Phys. Rev. B 105, 165133.